PAK DISTRIBUTER

The Distributor

When you remove the distributor cap from the top of the distributor, you will see the points and condenser. The condenser is a simple capacitor that can store a small amount of current. When the points begin to open, the current flowing through the points looks for an alternative path to ground. If the condenser were not there, it would try to jump across the gap of the points as they begin to open. If this were allowed to happen, the points would quickly burn up and you would hear heavy static on the car radio. To prevent this, the condenser acts like a path to ground. It really is not, but by the time the condenser is saturated, the points are too far apart for the small amount of voltage to jump across the wide point gap. Since the arcing across the opening points is eliminated, the points last longer and there is no static on the radio from point arcing.

The points require periodic adjustments in order to keep the engine running at peek efficiency. This is because there is a rubbing block on the points that is in contact with the cam and this rubbing block wears out over time changing the point gap. There are two ways that the points can be measured to see if they need an adjustment. One way is by measuring the gap between the open points when the rubbing block is on the high point of the cam. The other way is by measuring the dwell electrically. The dwell is the amount, in degrees of cam rotation, that the points stay closed.

On some vehicles, points are adjusted with the engine off and the distributor cap removed. A mechanic will loosen the fixed point and move it slightly, then retighten it in the correct position using a feeler gauge to measure the gap. On other vehicles, most notably GM cars, there is a window in the distributor where a mechanic can insert a tool and adjust the points using a dwell meter while the engine is running. Measuring dwell is much more accurate than setting the points with a feeler gauge.

Points have a life expectancy of about 10,000 miles at which time they have to be replaced. This is done during a routine major tune up. During the tune up, points, condenser, and the spark plugs are replaced, the timing is set and the carburetor is adjusted. In some cases, to keep the engine running efficiently, a minor tune up would be performed at 5,000 mile increments to adjust the points and reset the timing.

Ignition Coil
Ignition CoilThe ignition coil is nothing more that an electrical transformer. It contains both primary and secondary winding circuits. The coil primary winding contains 100 to 150 turns of heavy copper wire. This wire must be insulated so that the voltage does not jump from loop to loop, shorting it out. If this happened, it could not create the primary magnetic field that is required. The primary circuit wire goes into the coil through the positive terminal, loops around the primary windings, then exits through the negative terminal.

The coil secondary winding circuit contains 15,000 to 30,000 turns of fine copper wire, which also must be insulated from each other. The secondary windings sit inside the loops of the primary windings. To further increase the coils magnetic field the windings are wrapped around a soft iron core. To withstand the heat of the current flow, the coil is filled with oil which helps to keep it cool.

The ignition coil is the heart of the ignition system. As current flows through the coil a strong magnetic field is built up. When the current is shut off, the collapse of this magnetic field to the secondary windings induces a high voltage which is released through the large center terminal. This voltage is then directed to the spark plugs through the distributor.

Ignition Timing
The timing is set by loosening a hold-down screw and rotating the body of the distributor. Since the spark is triggered at the exact instant that the points begin to open, rotating the distributor body (which the points are mounted on) will change the relationship between the position of the points and the position of the distributor cam, which is on the shaft that is geared to the engine rotation.

While setting the initial, or base timing is important, for an engine to run properly, the timing needs to change depending on the speed of the engine and the load that it is under. If we can move the plate that the points are mounted on, or we could change the position of the distributor cam in relation to the gear that drives it, we can alter the timing dynamically to suit the needs of the engine.

Why do we need the timing to advance when the engine runs faster?
When the spark plug fires in the combustion chamber, it ignites whatever fuel and air mixture is present at the tip of the spark plug. The fuel that surrounds the tip is ignited by the burning that was started by the spark plug, not by the spark itself. That flame front continues to expand outward at a specific speed that is always the same, regardless of engine speed. It does not begin to push the piston down until it fills the combustion chamber and has no where else to go. In order to maximize the amount of power generated, the spark plug must fire before the piston reaches the top of the cylinder so that the burning fuel is ready to push the piston down as soon as it is at the top of its travel. The faster the engine is spinning, the earlier we have to fire the plug to produce maximum power.

 

blogger templates | Make Money Online